va亚洲中文字幕无码,又粗又硬又黄特黄的免费视频,无码网站天天大爽免,国产精品久久久久久久久丫

歡迎來到佛山康阜新材料有限公司!我們專注于PP阻燃劑、PP無鹵阻燃劑、PP環保阻燃劑、PP阻燃母粒、聚丙烯阻燃劑、聚丙烯阻燃母粒!
您的位置:康阜阻燃劑 > 業界資訊 > 高分子材料的阻燃機理詳解

高分子材料的阻燃機理詳解

發布時間:2019-08-21 08-21 15:53 作者:康阜新材料

聚合物的燃燒是一個非常激烈復雜的熱氧化反應,具有冒發濃煙或熾烈火焰的特征。燃燒的一般過程是在外界熱源的不斷加熱下,聚合物先與空氣中的氧發生自由基鏈式降解反應,產生揮發性可燃物,該物達到一定濃度和溫度時就會著火燃燒起來,燃燒所放出的一部分熱量供給正在降解的聚合物,進一步加劇其降解,產生更多的可燃性氣體,火焰在很短的時間內就會迅速蔓延而造成一場大火。


阻燃劑是一類能夠阻止塑料引燃或抑制火焰傳播的助劑。根據其使用方法可分為添加型和反應型兩類,添加型阻燃劑是在塑料的加工過程中摻入塑料中,多用于熱塑性塑料。反應型阻燃劑是在聚合物合成過程中作為單體化學鍵合到聚合物分子鏈上,多用于熱固性塑料,有些反應型阻燃劑也可用作添加型阻燃劑。按照化學結構,阻燃劑又可分為無機和有機兩類,在這些化合物中多含有鹵素和磷,有的含有銻、硼、鋁等元素。


1.阻然劑的阻燃效應

阻燃劑的阻燃作用就是在聚合物材料的燃燒過程中能阻止或抑制其物理或化學變化的速度,具體說來,這些作用體現在以下幾個方面。


(1 )吸熱 效應其作用是使高聚物材料的溫度上升發生困難,例如,硼砂具有10個分子的結晶水,由于釋放出結晶水要奪取141.8kJ/mol熱量,因其吸熱而使材料的溫度上升受到了抑制,從而產生阻燃效果。水合氧化鋁的阻燃作用也是因其受熱脫水產生吸熱效應的緣故。另外,一些熱塑性聚合物裂解時常產生的熔滴,因能離開燃燒區移走反應熱,也能發揮一定的阻燃效果。


(2)覆蓋效應其作用是在較高溫度下生成穩定的覆蓋層,或分解生成泡沫狀物質,覆蓋于高聚物材料的表面,使燃燒產生的熱量難以傳入材料內部,使高聚物材料因熱分解而生成的可燃性氣體難于逸出,并對材料起隔絕空氣的作用,從而抑制材料裂解,達到阻燃的效果。如磷酸酯類化合物和防火發泡涂料等可按此機理發揮作用。


(3)稀釋效應此類物質在受熱分解時能夠產生大量的不燃性氣體,使高聚物材料所產生的可燃性氣體和空氣中氧氣被稀釋而達不到可燃的濃度范圍,從而阻止高聚物材料的發火燃燒。能夠作為稀釋氣體的有CO2, NH3, HCl和H2O等。磷酸胺、氯化胺、碳酸胺等加熱時就能產生這種不燃性氣體。



(4)轉移效應其作用是改變高聚物材料熱分解的模式,從而抑制可燃性氣體的產生。例如,利用酸或堿使纖維素產生脫水反應而分解成為炭和水,因為不產生可燃性氣體,也就不能著火燃燒。氯化胺、磷酸胺、磷酸酯等能分解產生這類物質,催化材料稠環炭化,達到阻燃目的。


(5)抑制效應(捕捉自由基),高聚物的燃燒主要是自由基連鎖反應,有些物質能捕捉燃燒反應的活性中間體HO·、H ·、·O·、HOO·等,抑制自由基連鎖反應,使燃燒速度降低直至火焰熄滅。常用的溴類、氯類等有機鹵素化合物就有這種抑制效應。


(6) 增強效應(協同效應) 有些材料,若單獨使用并無阻燃效果或阻燃效果不大,多種材料并用就可起到增強阻燃的效果。三氧化二銻與鹵素化合物并用,就是最為典型的例子。其結果是,不但可以提高阻燃效率,而且阻燃劑的用量也可減少。



2.阻燃機理


材料的阻燃性,常通過氣相阻燃、凝聚相阻燃及中斷熱交換阻燃等機理實現。抑制促進燃燒反應鏈增長的自由基而發揮阻燃功能的屬氣相阻燃;在固相中延緩或阻止高聚物熱分解起阻燃作用的屬凝聚相阻燃;將聚合物燃燒產生的部分熱量帶走而導致的阻燃,則屬于中斷熱交換機理類的阻燃。但燃燒和阻燃都是十分復雜的過程,涉及很多影響和制約因素,將一種阻燃體系的阻燃機理嚴格劃分為某一種是很難的,實際上很多阻燃體系同時以幾種阻燃機理起作用。



2. 1氣相阻燃機理


氣相阻燃系統指在氣相中使燃燒中斷或延緩鏈式燃燒反應的阻燃作用,下述幾種情況下的阻燃都屬于氣相阻燃。


  (1)阻燃材料受熱或燃燒時能產生自由基抑制劑,從而使燃燒鏈式反應中斷。


  (2)阻燃材料受熱或燃燒時生成細微粒子,它們能促進自由基相互結合以中止鏈式燃燒反應。


  (3)阻燃材料受熱或燃燒時釋放出大量的惰性氣體或高密度蒸汽,前者可稀釋氧和氣態可燃物,并降低此可燃氣的溫度,致使燃燒中止; 后者則覆蓋于可燃氣上,隔絕它與空氣的接觸,因而使燃燒窒息。可揮發性、低沸點的含磷化合物,諸如三烷基氧化磷(R3PO) ,屬于氣相阻燃劑。質譜分析表明,三苯基膦酸酯和三苯基膦氧在火焰中裂解成自由基碎片,這些自由基像鹵化物一樣捕獲H·及O·游離基,從而起到抑制燃燒鏈式反應的作用。


  在紅磷的燃燒和裂解中,也形成P·,它們和聚合物中的氧發生反應生成磷酸酯結構。此外,膨脹阻燃體系也可能在氣相中發揮作用,其中的胺類化合物遇熱可分解產生NH3、 H2O和NO,前兩種氣體可稀釋火焰區的氧濃度,后者可使燃燒賴以進行的自由基淬滅,致使鏈反應終止。




2.2凝聚相阻燃機理


這是指在凝聚相中延緩或中斷阻燃材料熱分解而產生的阻燃作用,下述幾種情況的阻燃均屬于凝聚相阻燃。


  (1 )阻燃劑在凝聚相中延緩或阻止可產生可燃氣體和自由基的熱分解。


  (2) 阻燃材料中比熱容較大的無機填料,通過蓄熱和導熱使材料不易達到熱分 解溫度。


  (3 )阻燃劑受熱分解吸熱,使阻燃材料溫升減緩或中止。


  (4)阻燃材料燃燒時在其表面生成多孔炭層,此層難燃、隔熱、隔氧,又可阻止可燃氣進入燃燒氣相,致使燃燒中為維持繼續燃燒,必須具有足夠的氧氣和可燃性氣體混合物。如果熱裂解生成的自由基被截留而消失,燃燒就會減慢或中斷。含有有機溴化物作阻燃劑的阻燃熱塑性塑料發生燃燒時,存在以下反應。




  RH→R·+ H· 鏈引發


  HO·+CO=CO2+H· 鏈增長(高度放熱反應)


  H·+O2= HO·+O· 鏈支化


  O·+HBr= HO·-+Br· 鏈轉移


  HO·+HBr=H2O +Br· 鏈終止



  具有高度反應性的HO·自由基在燃燒過程中起關鍵作用。當HO·被反應性較差的Br·取代時,自由基鏈式反應就發生終止。



     


2.3中斷熱交換阻燃機理


這是指將阻燃材料燃燒產生的部分熱量帶走,致使材料不能維持熱分解溫度,因而不能維持產生可燃氣體,于是燃燒自熄。例如,當阻燃材料受強熱或燃燒時可熔化,而熔融材料易滴落,因而將大部分熱量帶走,減少了反饋至本體的熱量,致使燃燒延緩,最后可能終止燃燒。所以,易熔融材料的可燃性通常都較低,但滴落的灼熱液滴可引燃其他物質,增加火災危險性。




3 幾種典型阻燃劑的阻燃機理



3.1 鹵系阻燃劑


鹵系阻燃劑包括溴系和氯系阻燃劑。鹵系阻燃劑是目前世界上產量最大的有機阻燃劑之一。在鹵系阻燃劑中大部分是溴系阻燃劑。工業生產的溴系阻燃劑可分為添加型、反應型及高聚物型三大類,而且品種繁多。國內外市場上現有20種以上的添加型溴系阻燃劑,10種以上的高分子型溴系阻燃劑,20種以上的反應型溴系阻燃劑。添加型的阻燃劑主要有十溴二苯醚(DBDPO).四溴雙酚A雙(2,3一二烷丙基)醚(TBAB)、八溴二苯醚(OBDPO)等;反應型阻燃劑主要有四溴雙酚A (TBBPA), 2, 4, 6-三溴苯酚等;高分子型阻燃劑主要有溴化聚苯乙烯、溴化環氧、四溴雙酚A碳酸酯齊聚物等。溴系阻燃劑之所以受到青睞,其主要原因是它的阻燃效率高,而且價格適中。由于C-Br鍵的鍵能較低,大部分溴系阻燃劑的分解溫度在200℃ -300℃,此溫度范圍正好也是常用聚合物的分解溫度范圍。所以在高聚物分解時,溴系阻燃劑也開始分解,并能捕捉高分子材料分解時的自由基,從而延緩或抑制然燒鏈的反應,同時釋放出的HBr本身是一種難燃氣體,可以覆蓋在材料的表面,起到阻隔與稀釋氧氣濃度的作用。這類阻燃劑無不例外的與銻系(三氧化二銻或五氧化二銻)復配使用,通過協同效應使阻燃效果得到明顯提高。



鹵系阻燃劑主要在氣相中發揮阻燃作用。因為鹵化物分解產生的鹵化氫氣體,是不燃性氣體,有稀釋效應。它的比重較大,形成一層氣膜,覆蓋在高分子材料固相表面,可隔絕空氣和熱,起覆蓋效應。更為重要的是,鹵化氫能抑制高分子材料燃燒的連鎖反應,起清除自由基的作用。以溴化物為例,其抑制自由基連鎖反應的機理如下:



含溴阻燃劑 → Br·


Br·+RH→R·+HBr


HO·+HBr=H2O +Br·


高分子材料中加入的含溴阻燃劑,遇火受熱發生分解反應,生成自由基Br·,它又與高分子材料反應生成溴化氫,溴化氫與活性很強的OH·自由基反應,一方面使得Br再生,一方面使得OH·自由基的濃度減少,使燃燒的連鎖反應受到抑制,燃燒速度減慢,直至熄滅。


但是當發生火災時,由于這些材料的分解和燃燒產生大量的煙塵和有毒腐蝕性氣體造成“二次災害”,且燃燒產物(鹵化物)具有很長的大氣壽命,一旦進入大氣很難去除,嚴重地污染了大氣環境,破壞臭氧層。另外,多溴二苯醚阻燃的高分子材料的燃燒及裂解產物中含有有毒的多溴代二苯并二惡烷(PBDD)及多溴代二苯并呋喃(PBDF)。 1994年9月,美國環境保護局評價證明了這些物質對人和動物是致毒物質。



3.2磷及磷化合物的阻燃機理


磷及磷化合物很早就被用作阻燃劑使用,對它的阻燃機理研究得也較早,起初發現使用含磷阻燃劑的材料燃燒時會生成很多焦炭,并減少了可燃性揮發性物質的生產量,燃燒時阻燃材料的熱失重大大降低,但阻燃材料燃燒時的煙密度比未阻燃時增加。根據上面的事實提出了一些阻燃機理。從磷化合物在不同反應區內所起阻燃作用可分為凝聚相中阻燃機理和蒸汽相中阻燃機理,有機磷系阻燃劑在凝聚相中發揮阻燃作用,其阻燃機理如下:


在燃燒時,磷化合物分解生成磷酸的非燃性液態膜,其沸點可達300℃。同時,磷酸又進一步脫水生成偏磷酸,偏磷酸進一步聚合生成聚偏磷酸。在這個過程中,不僅由磷酸生成的覆蓋層起到覆蓋效應,而且由于生成的聚偏磷酸是強酸,是很強的脫水劑,使聚合物脫水而炭化,改變了聚合物燃燒過程的模式并在其表面形成碳膜以隔絕空氣,從而發揮更強的阻燃效果。


磷系阻燃劑的阻燃作用主要體現在火災初期的高聚物分解階段,因其能促進聚合物脫水發化,從而減少聚合物因熱分解而產生的可燃性氣體的數量,并且所生成的碳膜還能隔絕外界空氣和熱。通常,磷系阻燃劑對含氧聚合物的作用效果最佳,主要被用在含羥基的纖維素、聚氨酯、聚酯等聚合物中。對于不含氧的烴類聚合物,磷系阻燃劑的作用效果就比較小。


含磷阻燃劑也是一種自由基捕獲劑,利用質譜技術發現,任何含磷化合物在聚合物燃燒時都有PO·形成。它可以與火焰區域中的氫原子結合,起到抑制火焰的作用。另外,磷系阻燃劑在阻燃過程中產生的水分,一方面可以降低凝聚相的溫度,另一方面可以稀釋氣相中可燃物的濃度,從而更好地起到阻燃作用。



3.3無機阻燃劑的阻燃機理


無機阻燃劑包括氫氧化鋁、氫氧化鎂、膨脹石墨、硼酸鹽、草酸鋁和硫化鋅為基的阻燃劑。氫氧化鋁和氫氧化鎂是無機阻然劑的主要品種,它具有無毒性和低煙等特點它們由于受熱分解吸收大量燃燒區的熱量,使燃燒區的溫度降低到燃燒臨界溫度以下燃燒自熄:分解后生成的金屬氧化物多數熔點高、熱穩定性好、覆蓋于燃燒固相表面阻擋熱傳導和熱輻射,從而起到阻燃作用。同時分解產生大量的水蒸氣,可稀釋可燃氣體,也起到阻燃作用。



水合氧化鋁有熱穩定性好,在300℃下加熱2h可轉變為AlO(OH),與火焰接觸后不會產生有害的氣體,并能中和聚合物熱解時釋放出的酸性氣體,發煙量少,價格便宜等優點,因而它成為無機阻燃劑中的重要品種。水合氧化鋁受熱釋放出化學上結合的水,吸收燃燒熱量,降低燃燒溫度。在發揮阻燃作用時,主要是兩個結晶水起作用,另外,失水產物為活性氧化鋁,能促進一些聚合物在燃燒時稠環炭化,因此具有凝聚相阻燃作用。從該機理可知使用水合氧化鋁作阻燃劑,添加量應較大。



鎂元素阻燃劑主要品種為氫氧化鎂,是近幾年來國內外正在開發的一種阻燃劑,它在340℃左右開始進行吸熱分解反應生成氧化鎂,在423℃下失重達最大值,490℃下分解反應終止。從量熱法得知,其反應吸收大量熱能(44.8KJ/mol) ,生成的水也吸收大量熱能,降低溫度,達到阻燃。氫氧化鎂的熱穩定性和抑煙能力都比水合氧化鋁好,但由于氫氧化鎂的表面極性大,與有機物相容性差,所以需要經過表面處理后才能作為有效的阻燃劑。另外,它的熱分解溫度偏高,適宜熱固性材料等分解溫度較高的聚合物的阻燃。



在高溫下,可膨脹石墨中的嵌入層受熱易分解,產生的氣體使石墨的層間距迅速擴大到原來的幾十倍至幾百倍。當可膨脹石墨與高聚物混合時,在火焰的作用下,可在高聚物表面生成堅韌的炭層,從而起到阻燃作用。



硼酸鹽阻燃劑有硼砂、硼酸和硼酸鋅。目前主要使用的是硼酸鋅。硼酸鋅在300℃開始釋放出結晶水,在鹵素化合物的作用下,生成鹵化硼、鹵化鋅,抑制和捕獲游離的羥基,阻止燃燒連鎖反應;同時形成固相覆蓋層,隔絕周圍的氧氣,阻止火焰繼續燃燒并具有抑煙作用。硼酸鋅可以單獨使用,也可與其它阻燃劑復配使用。目前,主要產品有細粒硼酸鋅、耐熱硼酸鋅、無水硼酸鋅和高水硼酸鋅。



草酸鋁是氫氧化鋁衍生的結晶狀物,堿含量低。含有草酸鋁的高聚物燃燒時,放出H20, CO及CO2,而不生成腐蝕性氣體,草酸鋁還能降低煙密度和生煙速度。由于草酸鋁的堿含量低,所以用其阻燃的電線、電纜的包覆料時,不影響材料的電氣性能。



現在已開發的5種以硫化鋅為基的阻燃劑,其中4種用于硬質PVC,另一種可用于軟質PVC,聚烯徑和尼龍。這類阻燃劑可提高材料的抗老化性能,且與玻纖有好的相容性和提高聚烯烴的熱穩定性。



3.4阻燃劑混合使用的協同阻燃機理


含鹵阻燃劑與含磷阻燃劑配合使用能產生顯著的協同效應。對于鹵-磷阻燃協同效應,人們提出鹵-磷配合使用能互相促進分解,并形成比單獨使用具有更強阻燃效果的鹵-磷化合物及其轉化物PBr3、 PBr·、POBr3等。用裂解氣相色譜、差熱分析、差示掃描量熱分析、氧指數測定、阻燃劑程序升溫觀察等方法對鹵一磷協同效應進行的研究表明,鹵-磷配合使用時阻燃劑的分解溫度比單獨使用時略低,且分解非常劇烈,燃燒區的氯磷化合物及其水解產物形成的煙氣云團能較長時間逗留在燃燒區,形成強大的氣相隔離層。


關于磷-氮相互作用機理研究得不夠完善,一般認為用氮化物(如尿、氰胺、胍、雙氰胺、羥甲基三聚氰胺等)能促進磷酸與纖維素的磷酰化反應。形成的磷酸胺更易于纖維素發生成酯反應,這種酯的熱穩定性較磷酸酯的熱穩定性好。磷-氮阻燃體系能促使糖類在較低溫度下分解形成焦炭和水,并增加焦炭殘留物生產量,從而提高阻燃效果。磷化物和氮化物在高溫下形成膨脹性焦炭層,它起著隔熱阻氧保護層的作用,含氮化合物起著發泡劑和焦炭增強劑的作用。基本元素分析得知,殘留物中含氮、磷、氧三種元素,它們在火焰溫度下形成熱穩定性的無定形物,猶如玻璃體,作為纖維素的一個絕熱保護層。


三氧化二銻不能單獨作為阻燃劑(含鹵聚合物除外),但與鹵類阻燃劑并用則有很大的協同增強效應。這是因為三氧化二銻在鹵化物存在的情況下,燃燒時所生成的SbCl3, SbBr3等鹵化銻的相對密度很大,覆蓋在聚合物表面起覆蓋效應,并且在氣態時也有捕捉自由基的作用。例如,三氧化二銻與氯類阻燃劑并用時,由于氯化物受熱而分解出氯化氫,氯化氫和三氧化二銻反應生成三氯化銻和氯氧化銻,氯氧化銻受熱分解繼續生成三氯化銻。



水合硼酸鋅與鹵系阻燃劑配合使用具有良好的協同效應。在燃燒條件下,它們及其裂解產物之間通過相互作用,幾乎能使所有阻燃元素都能發揮阻燃作用。水合硼酸鋅與鹵系阻燃劑反應生成二鹵化鋅和三鹵化硼,它們能在氣相中捕獲HO·、 H·,在固相中形成玻璃狀隔離層,隔熱,隔氧,生成的水稀釋燃燒區的氧并帶走反應熱,因此能發揮較大的阻燃作用。




3.5膨脹體系的阻燃機理


膨脹型阻燃體系主要成分可分為酸源、碳源、氣源三個部分。酸源一般為無機酸或加熱至100^-250℃時生成無機酸的化合物,如磷酸、硫酸、硼酸、各種磷酸銨鹽、磷酸酯和硼酸鹽等;碳源(成炭劑)是形成泡沫炭化層的基礎,一般為富碳的多羥基化合物,如淀粉、季戊四醇和它的二聚物、三聚物以及含有輕基的有機樹脂等;氣源(發泡源)多為胺或酰胺類化合物,如三聚氰胺、雙氰胺、聚磷酸胺等。



膨脹體系成炭的結構復雜,影響因素眾多。聚合物主體的化學結構和物理特性、膨脹阻燃劑的組成、燃燒和裂解時的條件(如溫度和氧含量)、交聯的反應速率等等諸多因素都會對膨脹成炭的結構產生影響。而膨脹炭層的熱保護效應不僅取決于焦炭產量、炭層高度、炭層結構、保護炭層的熱穩定性,也取決于炭層的化學結構,尤其是環狀結構的出現增加了熱穩定性,此外還有化學鍵的強度以及交聯鍵的數量。


普遍認為膨脹體系的阻燃機理為凝聚相阻燃,首先聚磷酸胺受熱分解,生成具有強脫水作用的磷酸和焦磷酸,使季戊四醇酯化,進而脫水炭化,反應形成的水蒸汽及三聚氰胺分解的氨氣使炭層膨脹,最終形成一層多微孔的炭層,從而隔絕空氣和熱傳導,保護聚合物主體,達到阻燃目的。



膨脹型阻燃劑添加到聚合物材料中,必須具備以下性質:熱穩定性好,能經受聚合物加工過程中200℃以上的高溫;由于熱降解要釋放出大量揮發性物質,并形成殘渣,因而該過程不應對膨脹發泡過程產生不良影響;該類阻燃劑系均勻分布在聚合物中,在材料燃燒時能形成一層完全覆蓋在材料表面的膨脹炭質;阻燃劑必須與被阻燃高聚物有良好的相容性,不能與高聚物和添加劑發生不良作用,不能過多惡化材料的物理、機械性能。膨脹型阻燃劑優于一般的阻燃劑之處在于無鹵、無氧化銻:低煙、少毒、無腐蝕性氣體;膨脹阻燃劑生成的炭層可以吸附熔融著火的聚合物,防止其滴落傳播火災。



3.6銨鹽的阻燃機理


  銨鹽的熱穩定性較差,受熱時釋放出氨氣,如〔NH4)2SO4,其分解過程如下:


 〔NH4)2SO4→ NH4HSO4


 NH4HSO4 →H2SO4十NH3↑


  釋放出的氨氣為難燃性氣體,它稀釋了空氣中氧;形成的H2SO4起著脫水炭化催化劑的作用。通常認為后一種作用是主要的.另外的實驗表明,NH3在火中還發生下列反應:


NH3 +O2→N2+H2O


  并伴有深度氧化產物N2O4等,從中可看出NH3不僅有物理阻燃作用,而且還有化學阻燃作用。



3.7納米復合阻燃材料阻燃機理

  納米復合材料單獨提出來,雖然都屬于復合阻燃,但其原理有點不同。納米復合材料是指將材料中的一個或多個組分以納米尺寸或分子水平地分散在另一個組分基體中,此研究只有十幾年的歷史。實驗表明,因納米材料以超細的尺寸存在,所以各種類型的納米復合材料的性能比其相應的宏觀或微米級復合材料均有較大的改善,其中材料的熱穩定性和阻燃性能也會較大幅度的提高。



  某些鱗片狀無機物能夠在物理和化學的作用下碎裂成納米尺寸的結構微區,其片層間距一般在零點幾到幾個納米,它們不僅可以讓某些聚合物插層進入納米尺寸的夾層空間中,形成“插層型納米復合材料”,而且,無機夾層還會被聚合物撐開形成長徑比很大的單片狀無機物,均勻地分散在聚合物的基體中,形成“層離型納米復合材料”。利用多孔或層狀無機化合物的特性,制備無機/聚合物納米復合材料,在熱分解和燃燒過程中,可能形成炭及無機鹽多層結構,起到隔熱及阻止可燃氣體逸出的作用,使高聚物得以阻燃。另外,用無機/聚合物納米復合材料還具有防腐、防滲漏、耐磨耐候的作用。目前已在尼龍/粘土納米復合材料、PS/粘土納米復合材料、PET/粘土納米復合材料、PBT/粘土納米復合材料、PP/粘土納米復合材料等納米復合材料的研究方面取得了可喜的成績。



3.8有機硅阻燃劑


將硅酮化合物作為阻燃劑的研究始于20世紀80年代初期。1981年,Kamber等,發表關于聚碳酸酯與聚甲基硅氧烷共混,可使阻燃性能提高的研究報告。雖然有機硅阻燃劑的研究開發落后于鹵系及磷系阻燃劑,但是,有機硅阻燃劑作為一類新型的無鹵阻燃劑,以其優異的阻燃性、成型加工性和環境友好而獨具風采。有機硅阻燃劑有硅油、硅樹脂、帶功能團的聚硅氧烷、聚碳酸酯一硅氧烷共聚物丙烯酸酯一硅氧烷復合材料以及硅凝膠等。以硅酮化合物阻燃的高分子材料,硅酮阻燃劑多半會遷移到材料的表面,形成表面為硅酮富集層的高分子梯度材料。


  一旦燃燒時,就會生成硅酮特有的、含有一S i-O鍵和一Si-C-鍵的無機隔熱絕緣保護層,既阻止了燃燒生成的分解成物外逸,又抑制了高分子材料的熱分解,達到了高阻燃化、低發煙量、低有害性的目的。目前開發應用的有機硅阻燃劑有美國DowCorning公司開發并商品化的“D.C. RM ”系列阻燃劑:日本NEC與GE東芝有機硅公司共同研究開發的硅酮阻燃劑“XC-99-B6645";還有美國GE公司開發的SFR104有機硅樹脂等。


關鍵詞

PP阻燃劑PP無鹵阻燃劑 | PP環保阻燃劑 | PP阻燃母粒 | 聚丙烯阻燃劑聚丙烯阻燃母粒



關于我們

佛山康阜新材料有限公司位于佛山市順德區,是一家專注阻燃產品研發、配方設計、生產制造、技術服務及銷售于一體的高科技企業。公司以磷系阻燃劑、氮系阻燃劑、氫氧化鎂系阻燃劑、阻燃改性塑料為主,主營產品涵蓋PP阻燃劑、PP無鹵阻燃劑、PP環保阻燃劑、PP阻燃母粒、電瓶車阻燃劑、PA/PBT無鹵阻燃劑、TPE/TPU阻燃劑、XLPE電線線纜料阻燃劑、防火涂料阻燃劑、無紡布織物表面涂層阻燃劑、大分子成碳劑等系列產品。公司擁有先進的研發實驗室、設備齊全檢測實驗室、綜合應用實驗室和轉化中車平臺,形成了實驗-中試-產業-實驗的閉環式研發體系,為產品的過硬品質提供了全方面的有效保障。公司所有的產品符合均符合相關阻燃標準和RoHS、REACH等法規并有相關的第三方SGS檢測報告。


聯系方式

聯系人:楊經理,電話:183-0763-5851

客服微信二維碼:

康阜新材料客服微信二維碼

(微信掃一掃添加)


本文鏈接: http://m.thegateadviser.com/hangyeixinwen/a_369.html,轉載請注明來自:佛山康阜新材料

上一篇文章 返回首頁 打印 返回上頁 下一篇文章

成功案例

cache
Processed in 0.021592 Second.